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Dilution Sampling

• Simulates plume
processes
• Semi volatile species

(Organics, Metals)

• Size Distribution

• Advanced
instrumentation

• Limited data for coal
emissions

• Complex
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Overview

• CMU dilution sampler
• CERF - pilot-scale pulverized coal

combustor.
• Effects of dilution & residence time on:

• Size Distribution
• Nucleation
• Mass emissions

• Before and after bag-house
• Hot filters vs. dilution



Schematic of CMU Dilution Sampler
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Residence Tank Design
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Instrumentation
• Size Distribution measurements

• Two Scanning Mobility Particle Sizers (SMPS)
• Nano-DMA: 0.003 µµµµm – 0.075 µµµµm
• Long-DMA: 0.015 µµµµm – 0.65 µµµµm

• Aerodynamic Particle Sizer (APS): 0.5µµµµm – 5 µµµµm
• Teflon Membrane filters

Normalize Emissions to an Exhaust Basis:
! PMnorm = PMmeas x DR



Pilot-Scale Coal Combustor (CERF)

• Pilot-scale: 50 lbs/hr
 (~500,000 Btu/hr)

• Simulates:
•Gas temperature
•Gas composition
•Residence time

of a Utility Boiler
• Eastern Bituminous Coal

 (low ash, low S)
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Effects of
Residence Time

on Size
Distribution
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Analysis of Size Distribution Data

• Coagulation simulations

• Will Coagulation Occur?
• Characteristic Times: ττττc=

• Before Bag-house: ττττc ~ 25-170 sec !!!! Coagulation

• After Bag-house: ττττc ~ 45,000 sec !!!! No Coagulation
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Total Number vs. Residence Time
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Effect of
Dilution Ratio

on Size
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Total Number Emissions as a function of
Dilution Ratio

After Bag-House
X 105

Before Bag-house
X 107



Gas to Particle Conversion

As combustion products cool
• SO3 + H2O !!!! H2SO4 !!!! particles

• Typical SO3 levels 1-3% of SO2 (~ 50 ug/m3)

Question:
Is H2SO4 going to
nucleate to form new
particles or condense
on existing particles?
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Will nucleation occur?

( )7.27rh5.3T1.0exp16.0Ccr −−=
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Critical H2SO4 concentration

If     !!!! Nucleation!

Kerminen & Wexler, 1994
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Before the Bag-house

• Nucleation depends
on dilution ratio
• Low dilution ratio !!!!

no nucleation
• High dilution ratio !!!!

nucleation



Theory Predicts Nucleation after
the Bag-house



Mass Emission vs. Dilution Ratio and
Residence Time
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Hot Filter Set-up
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Hot vs. Diluted Mass Emissions
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Conclusions
• Before Bag-house

• Coagulation in Tank
• High concentrations !!!! fast coagulation rates
• No generation of new particles
• Particle number decreases with residence time

• Nucleation in tunnel
• Strong function of dilution ratio

– High dilution ! high number concentrations
– Low dilution ! no nucleation

• After Bag-house
• Very intermittent Nucleation
• Low concentrations !!!! slow coagulation rates



Conclusions

Mass Measurements:
• Mass emission rate not affected by dilution

ratio or residence time
• Good agreement between hot filter and diluted

samples
• No significant gas to particle conversion in

dilution system
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